CDTire:
State-of-the-art Tire Models for Full Vehicle Simulation

2012 Americas HyperWorks Technology Conference
Dr. Manfred Bäcker, Axel Gallrein
Fraunhofer Society

- Fraunhofer Society 2010
 - Non-profit
 - 60 institutes
 - 18,000 employees
 - 1.65 bill. Euro

- Fraunhofer ITWM
 - 220 employees
 - 18 mill. Euro
 - Transport, fluid and material simulation
 - Dynamics and durability
 - Image processing
 - Optimization
 - Finance
 - High performance computing
Agenda

- Overview
 - CDTire Model Family
 - Parameterization
 - How CDTire works with MotionSolve

- Introducing new models
 - CDTire 30/HPS
 - CDTire 50

- On-going developments
 - CDTire NVH
 - Tire / soil interaction
Tire Simulation in Vehicle Development

Driver model
- Open loop
- Closed loop
- Optimal control

Vehicle model
- MBD model
- FEA model
- Subsystems

Tire model
- MBD model
- FEA model
- Linearization

Road model
- Rigid surface
- Soil
- Multi pass
MBD Tire Models - - - - vs. - - - Application Fields

Typical computational effort

- Empirical
- Frequency-based
- Rigid ring
 - Emperical contact
- Flexible belt
 - Brush-type contact
- FEA

Typical number of simulations

- Handling
- NVH
- Active safety
- Ride/Comfort
- Durability
- Crash

© Fraunhofer ITWM
MBD Tire Model Family CDTire

Typical number of simulations

Typical computational effort

- Empirical
- Frequency-based
- Rigid ring
 Emperical contact
- Flexible belt
 Brush-type contact
- FEA
- CDTire 20
- CDTire 30
- CDTire 40
- CDTire MC
- TireTool

DOFs

- 10^0
- 10^1
- 10^2
- 10^3
- 10^4
- 10^5

REPs

- 10^0
- 10^1
- 10^2
- 10^3

- Handling
- NVH
- Active safety
- Ride/Comfort
- Durability
- Crash

DOFs

- 10^0
- 10^1
- 10^2
- 10^3
- 10^4
- 10^5

REPs

- 10^0
- 10^1
- 10^2
- 10^3
MBD Tire Model Family CDTire

- **Model 20**
 - Rigid ring
 - Physical tangential contact formulation

- **Model 30**
 - Flexible ring
 - Brush type contact

- **Model 40**
 - Flexible Belt
 - Independent sidewalls

- **Model MC**
 - Large belt curvature
 - Large inclination angles

- **Adaptive models (automatic switching)**
 - Model 2030
 - Model 2040
CDTire 20

- Model details
 - Rigid ring
 - Physical tangential contact formulation

- Road surfaces
 - Arbitrary 3D
 - Long wavelength

- Typical applications
 - Handling (Durability)
 - Active safety

- Real-time factor
 - 3 - 6
CDTire 20: Application Scenario Handling

Validation Results: Cornering Event
(CPG090 Figure 8 GVW 35PSI Nominal Shock)

Publication
CDTire 30

- Model details
 - Flexible ring
 - Brush type contact formulation
 - Accumulated sidewall

- Road surfaces
 - Trackwise 2D
 - Arbitrary wavelength

- Typical applications
 - Ride & Comfort
 - Durability

- Real-time factor
 - 10 - 30
CDTire 30: Application Scenario Durability

- Publication
CDTire 40

- Model details
 - 3D structure
 - Brush type contact formulation
 - Independent sidewalls

- Road surfaces
 - Arbitrary 3D

- Typical applications
 - Ride & Comfort
 - Durability

- Real-time factor
 - 40 - 100
CDTire 40: Application Scenario Special Events

Publication

CDTirePI: Parameterization via Measurements

- **Measurements**
 - Geometry (cross section, footprint)
 - Modal analysis
 - Static (stiffness’s, on cleat)
 - Steady-state (long. + lateral slip)
 - Transient (90°+45° cleat runs)

- **Optimization schemes**
 - Local
 - Fuzzy (expert knowledge build into rule sets)
TireTool: Parameterization via FEA tire model
TireTool: Parameterization via FEA tire model

Cross section
- Cross section scan
- Contour measurement

2D model
- CT-Scan cords
- Tire weight
- Shore A

3D model
- Modes and frequencies
- Static stiffness's

Virtual measurements
- Cleat runs
- Ground-out
- ...

Fine tune
TireTool: Parameterization via FEA tire model

- Measurements
 - Geometry (cross section, footprint)
 - Modal analysis
 - Static (vertical stiffness)
 - Material
 - CT

- Output is Abaqus model
Tire-Tool: Parameterization via FEA tire model

90° cleat run 40x40mm, 11 km/h, CDT40 validation

- Longitudinal Force
 - Measurement
 - Simulation

- Vertical Force
 - Measurement
 - Simulation

- LDE test rig @ Fraunhofer
 - Kistler P530 hub
 - Max. 12 km/h
 - Max. Fz 30 kN
 - Up to rim contact
Tire-Tool: Parameterization via FEA tire model

90° cleat run 40x40mm, 11 km/h (FEA validation), 30 and 40 km/h (prediction)
TireTool: Parameterization via FEA tire model

- 3D continuum
- 2D shell

Reduction of degrees-of-freedom (dofs)
- Proper orthogonal decomposition (POD)
- BMBF joint project „Multi-disciplinary Simulation and Non-linear Model Reduction (SNiMoRed)"

Reissner-Mindlin hypothesis
How CDTire works with MotionSolve

- Cooperation Altair / Fraunhofer
 - Altair is exclusive reseller for CDTire4MotionSolve
 - Distributed with HyperWorks 11.0
 - Integrated visual support in development
- Tire models
 - 20 / 30 / 40 / 2030 / 2040
- Road models
 - RSM1000 (parametric obstacles)
 - RSM1002 (drum model)
 - RSM2000 (large digital data)
 - RSM3000 (OpenCRG)
 - RSM1100 (User API)
- Full .adm compatibility
- Full CDTire.ini support (parallelization)
Introducing new models

- Model 20
 - Rigid ring
 - Physical tangential contact formulation
- Model 30
 - Flexible ring
 - Brush type contact
- Model 40
 - Flexible Belt
 - Independent sidewalls
- Model MC
 - Large belt curvature
 - Large inclination angles

New developments

- Model 30/HPS
 - C/C++ High Performance Solver
 - Real-time capable
- Model 50
 - Materialized sidewalls
 - Geometrical non-linear elastic shell discretization
- Model NVH
 - Flexible rim
 - Cavity mode
Introducing new models

Application scenarios
- Model 30/HPS
 - MIL / SIL / HIL cascade
 - Vehicle performance optimization
- Model 50
 - Large deformation, ground-out
 - Handling on rough road
- Model NVH
 - Up to 300 Hz

New developments
- Model 30/HPS
 - C/C++ High Performance Solver
 - Real-time capable
- Model 50
 - Materialized sidewalls
 - Geometrical non-linear elastic shell discretization
- Model NVH
 - Flexible rim
 - Cavity mode
CDTire 30/HPS

- Master integrator (typically larger time steps)
 - Iteration scheme
 - Step size control
- Slave integrator (typically smaller time steps)
 - Iteration schemes (HPS: PECE, Newmark)
 - Master step size control
- Tunable controls:
 - Master iteration
 - Slave iteration
 - Slave step size

- Secured time step
- MBS-solver
- Estimated rim states at $t+Dt$
- Tire model solver
- Tire forces at $t+Dt$

$dt =$ minor step of tire model integrator

$Dt =$ MBS step size

$Dt =$ new time step to be calculated by MBS-solver

$Dt =$ tire states from t to $t+Dt$ using much smaller minor steps dt
CDTire 30/HPS

- Scenario: 4 cleats (20x20mm), 40 km/h, 3 sec
- C/C++ High Performance Solver
 - Efficient memory storage and access
 - Efficient implicit Newmark with special projector in Newton-Iteration
 - Choice of deterministic integrator settings (fixed step, fixed iterations)
 - Parallelizable incl. road surface models (OpenCrg, RSM2000, RSM1000)

CDT30 (explicit integrator)
Real time factor = 1.8

CDT30/HPS (explicit integrator)
Real time factor = 1.1

CDT30/HPS (implicit integrator, var. step)
Real time factor = 0.6

CDT30/HPS (implicit integrator, determ.)
Real time factor = 0.8
CDTire 30/HPS: Application Scenario Test Rig

- Scenario MIL / SIL / HIL: Implementation used as component on real test rigs
- Road profile and driving rule can be used as excitation of the test rig
- No test track measurement needed (usually used as target for iteration process)
CDTire 30/HPS: Application Scenario Drive Simul.

- Scenario MIL / SIL / HIL: Component in Drive Simulator
- VAR-Simulator (Versatile Augmented Reality)
CDTire 50

- Functional element modeling
- Element stacking in pre-processing
- FD shell discretization

```
<table>
<thead>
<tr>
<th>Element</th>
<th>Contact FrC Elmt</th>
<th>Steel Cord FrC Elmt</th>
<th>Lateral FrC Elmt</th>
<th>Circumferential FrC Elmt</th>
<th>Shear FrC Elmt</th>
<th>Bending FrC Elmt</th>
<th>Inflation Press FrC Elmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tread layer</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Steel Cord Layer #1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Steel Cord Layer #2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Carcass Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubber Layer</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Inflation Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Belt cells only

Belt and sidewall cells

© Fraunhofer ITWM
CDTire 50

- Scenario: 18 cleats (10x10,…,20x20mm), 40 km/h, 10 sec
- C/C++ High Performance Solver
 - Efficient memory storage and access
 - Efficient implicit Newmark with special projector in Newton-Iteration
 - Choice of deterministic integrator settings (fixed step, fixed iterations)
 - Parallelizable incl. road surface models (OpenCrg, RSM2000, RSM1000)

CDT50 (explicit integrator)
50 cross sections
12 segments
Real time factor = 49
CDTire NVH

- Method NVH – FEA tire
 - Steady state transport analysis (relative kinematic ALE description)
 - Rim and road (footprint) excitation
 - Condensation of road excitation: Track-wise time delay as phase shift

- Internal Fraunhofer research project (MEF)
 - Cavity possible
 - Flexible rim possible
CDTire NVH

- Linearization around Stationary rolling state
- Transient Equations of motion
- Add Gyroscopic forces
- Linear State space equation
- Laplace Transform
- Condensation of Road excitation

- Internal Fraunhofer research project (MEF)
 - Solver independence
 - Linearization and
 - Transient
CDTire NVH

- Switch to „eulerian“ description by adding gyroscopic forces
- Leads to frequency split for rotating tires
- Example is free hanging tire, but rotating
CDTire NVH

- Simulated experimental modal analysis
- Spacial acceleration measurement
- Free rim, constant rot. velocity $w = 85 \text{ rad/s}$
Tire / Soil interaction

- No deformation
 - Rigid surface

- Local deformation, decoupled
 - Terrain response

- Local deformation, coupled
 - Bulldozing effect

- Terrain compaction
 - Multipass

- Tangential mass transport
 - Slip sinkage

- Diskrete Element Method
 - DEM
Tire / Soil interaction

- Simple pressure-sinkage relations
 - Bekker: \(p(z) = (k_c/b + k_\Phi) \cdot z^n \)
 - Reece: \(p(z) = (c \cdot \kappa_c + \gamma_s \cdot b \cdot \kappa_\Phi) \cdot (z/b)^n \)

 \((k_c, k_\Phi, \kappa_c, \kappa_\Phi, n): \) pressure-sinkage parameters,
 \(\gamma_s: \) weight density, \(c: \) cohesion of terrain

- Instantaneous soil deformation
- No sinkage “propagation”
- Localized parameter, i.e. \(k = k(x,y), \ n = n(x,y) \)
- Tangential frictional contact
- Implementation in C/C++
- Python interface for rapid evaluation of alternative sinkage models
Spreading the Application Range

Typical number of simulations

<table>
<thead>
<tr>
<th>DOFs</th>
<th>REPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^0</td>
<td>10^3</td>
</tr>
<tr>
<td>10^1</td>
<td>10^2</td>
</tr>
<tr>
<td>10^2</td>
<td>10^1</td>
</tr>
<tr>
<td>10^3</td>
<td>10^0</td>
</tr>
<tr>
<td>10^4</td>
<td></td>
</tr>
<tr>
<td>10^5</td>
<td></td>
</tr>
</tbody>
</table>

Typical computational effort

- Empirical
- Frequency-based
- Rigid ring
- Empirical contact
- Flexible belt
- Brush-type contact
- FEA

CDTire NVH

CDTire 20

CDTire 30

CDTire 40

CDTire MC

CDTire HPS

CDTire 50

TireTool

Handling

NVH

Active safety

Ride/Comfort

Durability

Crash

TireTool

© Fraunhofer ITWM
CDTire: State-of-the-art Tire Models for Full Vehicle Simulation

2012 Americas HyperWorks Technology Conference
Dr. Manfred Bäcker, Axel Gallrein
manfred.baecker@itwm.fraunhofer.de
axel.gallrein@itwm.fraunhofer.de

Thank you for your attention!