Development of Aluminum Heat Shield Designs Using OptiStruct and HyperForm

4th European HyperWorks Technology Conference

Mark Melnykowycz, Davide Caprioli
Outline

Introduction

Problem Definition

Analysis

Discussions

Conclusions

Significance of work
Automotive Heat Shields

Used as insulating component
Produced with embossed Aluminum sheet metal
Susceptible to fatigue damage and cracking
Formed over different geometries
Heat Shield Simulation

Goals:

- Characterize dynamic response
- Determine stress concentration points

Basic Workflow

- Read in CAD data
- Compare CAD to real part
 - Identify geometrical differences, flat areas, clinched edges, etc.
- Mesh geometry, apply material properties
- Modal behavior, forced response simulation
- Compare simulations results to experimental
 - Modify model parameters if needed
Dynamic Mode and Fatigue Test Characterization

Procedure
- Vertical acceleration of part
- Different acceleration levels used
- Desired dynamic mode excited
- Part fatigue cycled around one mode

Data Analysis
- Number of cycles to failure
- Crack grown after initial failure
- Frequency reduction over entire test

More fatigue resistant if more on the right
Outline

Introduction

Problem Definition

Analysis

Discussions

Conclusions

Significance of work
Embossed Aluminum Types

Embossing type strongly influences material stiffness.
Embossed Aluminum

Aluminum
- Isotropic properties when flat
- Orthotropic when embossed

Embossing
- Work-hardens the aluminum
- Increases bending stiffness
- Affects crack behavior

Orientation of Emboss Pattern
- Influences dynamic response
- Crack nucleation point
- Crack growth patterns

Bending stiffness increases with height
Outline

Introduction
Problem Definition

Analysis

Discussions
Conclusions
Significance of work

OptiStruct
HyperMesh
Radioss
Nastran
Heat Shield Dynamic Response

Critical range 0-200 Hz
Highest loads during mode excitation
Priority: Limit modes in critical range

1st Mode Excitation

1st Mode Simulation

High Stress Area
Fatigue Test - Failure Characteristics

By Means of FE Simulation, the stress analysis has been performed for the same fatigue test condition.

Bolt connection point (1) most critical and retains the longest cracks

High stresses seen on the part edge (2), easy crack nucleation where folded edges do not exist

In general, the material at the edge of washers will be very susceptible to crack nucleation.

General agreement between location of cracks and stress concentration in Test and Simulation
Optimization of Material Direction

Q: What is the optimal material angle to increase part rigidity?

OptiStruct

- Topology optimization
- Maximize 1st mode objective
- Allow material angle to vary

- PCOMP - combines tensile and bending stiffness for optimization
- DVMREL2 - Relates DESVAR to the material property model
- DESVAR - Defines variables to be used in the DEQATN (design equation)
- DEQATN

Tensile Moduli (E1, E2)
Bending Moduli (B1, B2)
Design Case I: OptiStruct Material Orientation

- Material direction optimized - objective of maximizing 1st normal mode
- Material orientation can be varied against a stress constraint outside of the design region (at bolt locations).
Design Case II: Define Material Property Design Space

- Determine ideal stiffness combination
- 1st mode maximized as objective function
- Basic relationship between tensile and bending moduli used as design space range
- Tensile and bending moduli allowed to vary in design space DEQATN
- DVMREL2 - Relates DESVAR to the material property model
- DESVAR - Defines variables to be used in the DEQATN (design equation)

Moduli Target of New Design

- Tensile (GPa)
 - $E_1 = 0.04$, $E_2 = 0.02$
- Bending (GPa)
 - $E_1 = 0.25-0.46$, $E_2 = 0.34-0.38$
Heat Shield Development

Heat Shield Characterization
- Fatigue Testing
- Test Parameters
- FE Simulation

Emboss Characterization
- Material Properties
- FE Simulation
- New Shape Design

TriForm Development
- Mat. Prop. Optimization
- Prototyping
- Testing/Validation
Outline

Introduction
Problem Definition
Analysis

Discussions

Conclusions
Significance of work
Technical Description

Key Points
• Bending stiffness ↑ as emboss height ↑
• Tensile stiffness ↓ as emboss height ↑
• Ribs determine bending stiffness direction
• Rib direction influences crack growth

TriForm combines the important features of the Sevelen and Dieppe patterns

Emboss 1
• Uniform distribution, stiffness in two directions
• 90 deg property grouping

Emboss 2
• High bending stiffness (90º pattern)

TriForm
• Maintain bending stiffness in three directions
• Use new pattern distribution of 60º to 120º
Design Case III – Emboss Structure Design

- Linear behavior predicted via beam theory
- Model show trends in geometry response to applied bending load
- Rib areas broken up into different properties to control symmetry
- Ribs along loading direction increase in height
Design Case IV: TriForm Shape Forming

- Forming behavior simulated using HyperForm Incremental solver
- High stress areas identified in mold design
- Design refinements made to improve forming of embossment
Design Case IV: Sheet Metal Forming Simulation

- Embossed sheet metal blank with specific embossing pattern
- Simple crush simulation with fixed Die and closes the Press – deforming the Blank
- Non-linear material model assigned to the blank

Deformation of aluminum sheet can be evaluated for different embossing patterns

Small blank sections used to reduce computation time

Focus on geometric area with high forming potential
HyperForm Incremental Forming Simulations

- Full forming model of embossed aluminum on heat shield geometry
- Contours over difficult forming areas can be represented correctly
- Final emboss shape and crushing degree can be predicted
- Very long simulation time (2-3 days)

TriForm Simulation

Standard Pattern
Displacement Deformation of TriForm vs Standard

- Displacement contours show difference in forming ability over identical topography
- Sevelen displays smoother transition ability between flat and high aspect ratio structures
- TriForm 120 reproduces forming areas similar to Sevelen
Outline

Introduction

Problem Definition

Analysis

Discussions

Conclusions

Significance of work
Fatigue results – TriForm vs. Standard

- Dynamic similar to Standard
- Fatigue life improved with TriForm
- TriForm rib pattern reduces crack propagation ability

More fatigue resistant if more on the right
Fatigue Crack Behavior – Durability

- Worse case scenario presented, TF120 rib aligned with natural stress line of part
- TF120 blunts and retards crack growth at comparable cycle count w/Standard
- Reflected in the improved mode degradation results of TF120
- TF120 reduces crack propagation ability as compared with Standard pattern

1.5G 600k Cycles
Future Directions

Expand analysis into fatigue simulation domain

Include fatigue limit as a design constraint

Optimize heat shield geometry in combination with embossed structure

Stress constraint

Shaker test simulation

• Forced frequency response
• Composite material fatigue description

mark.melnykowycz@rieterauto.com
davide.caprioli@rieterauto.com