An alternative approach to automotive door seal design using HyperStudy

Maxime Le Moine, Mahmoud Oumohand
Sales: 2.5 Md$
Employees: 20,000
Locations: 55+
Sealing design: current approach

Today, seal design and closing effort forces are determined using a nominal seal shape at extreme BIW tolerances.
What is the problem?

When designing a weather-strip seal:
- Match the OEM’s requirements
- Find the design of the seal which will better fulfill these requirements.

» Shape optimization

When manufacturing the weather-strip seal:
- Reduce the impact of small extrusion tolerance variation
- Verify that a given design is less sensible to these variations

» Sensibility study

- Find the design of the product which will both satisfy the requirements and be less sensitive to small deformations

» Robust design optimization
Objectives

What:
- Design process Parametric design approach

How:
- Identify the numerical tools
- Define a procedure
- Study the effect of size and shape variations in seal design
The numerical tools

HyperStudy: optimization
(*Altair Engineering*)

HyperMesh: Morphing function
(*Altair Engineering*)

Marc & Mentat:
FE solver & pre-processor
(*MSC Software*)
Communication not obvious between the numerical tools
Data exchange not easy

Python routines (in house developments):
- 2 initialization procedures
- 2 analysis procedures
- 5 scripts

Initialisation
- Parameterization of the product
- Choice of results to extract
- Creation of the model file
- First calculation

Steps of analysis
- Definition of parameters value
- Writing of the calculation input file
- Calculation
- Extraction of results
A simple typical design

Ideal (nominal design) Reality (geometric scatter)

Requirements
Parameterization of geometric scatter

Parameters

- Height
- Thicknesses
- Radiuses

Process

1. Creation of geometry
2. Definition of elements to project and support
3. Morphing
4. Displacement OK?
 - YES: validate, save shape
 - NO: adjust domains and handles
Initialization of study – export of parameters

- Accessible from *optimization* panel of HyperMesh
- Associates to each deformation a variable (initial value and definition interval)
- Export two files:
 - *shp*: contains the definition of all deformations as a list of Δx, Δy, Δz associated to the nodes coordinates.
 - *marc.node.tpl*: definition of parameters and list of nodes coordinates in *Marc* format; the nodes affected by a deformation are indicated by a tag and point to the matching line in the *shp* file.

```plaintext
1 {parameter(epaisseur_3,"epaisseur_3", 0.00000000e+000, 0.00000000e+000, 1.00000000e+000)}
15 {coeff1 = read("model_0_7.shp",0,0,1)}
30 {I1 = I1 + epaisseur_3 * coeff1}
```
Initialization of study – creation of model file

- Procedure accessible in HyperStudy
- Ask the user for the location of the Marc input file on which the morphing were based, and for the location of the .marc.node.tpl file
- Delete the list of nodes coordinates in the input file and replace it by an inclusion of the .marc.node.tpl file

```plaintext
coordinates

3 1.636 0 1

(include "W:\calcul\Bastiares\Maxime_Lecoinc\Etude_19\model_0_7.marc.node.tpl")
define node set fx-y_nodes
22 63
define node set fx-x_nodes
22 63
define element set gde-levre
398 to 735
mooney
```

- The file created will be used as model (template) to HyperStudy
Procedure accessible from HyperStudy

Analyses of the Marc input file used for the study
 - Lists all the contacts and loadcases

Opens a Python/Tk window where the user chooses the couples Contacts / Load cases to be studied
The model can now be imported in HyperStudy; the parameters will be recognized automatically.

A first calculation (nominal run) must be performed in order to define the responses (numerical values) to study.
Initialization of study – Definition of response

- During initialization: choice of couples contacts/loadcases to study
- During a calculation: writing of a text file containing the forces applied to a contact during the associated loadcase, for each increment and both X- and Y- axis
- After the nominal run, choice of particular values by a tool in HyperStudy
Type of DOE
Number of runs
Set of possible values for each parameter
Set of combinations for all parameters
DOE: results

- Extraction of results
- Main and secondary effects
- Distribution of responses
Choice of the optimization algorithm: ARSM for a shape optimization
Choice of the objectives: get as close as possible to the requirements
Optimization: results

Convergence in 23 iterations

<table>
<thead>
<tr>
<th></th>
<th>Optimized design</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force mini</td>
<td>5.52</td>
<td>5.5</td>
</tr>
<tr>
<td>Force nominal</td>
<td>8.01</td>
<td>8.0</td>
</tr>
<tr>
<td>Force maxi</td>
<td>11.60</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Table: Optimization results

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Objective 1</th>
<th>Objective 2</th>
<th>Objective 3</th>
<th>hauteur</th>
<th>épaisseur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7546590</td>
<td>3.1856950</td>
<td>5.3329180</td>
<td>0.8200000</td>
<td>-0.800000</td>
</tr>
<tr>
<td>2</td>
<td>1.8060490</td>
<td>3.2011800</td>
<td>5.4058280</td>
<td>0.9550000</td>
<td>-0.800000</td>
</tr>
<tr>
<td>3</td>
<td>1.8110410</td>
<td>3.2578070</td>
<td>5.4100580</td>
<td>0.8200000</td>
<td>-0.600000</td>
</tr>
<tr>
<td>4</td>
<td>1.9213130</td>
<td>3.4413200</td>
<td>5.7186250</td>
<td>0.8200000</td>
<td>-0.800000</td>
</tr>
<tr>
<td>5</td>
<td>1.7827610</td>
<td>3.2154930</td>
<td>5.3630400</td>
<td>0.8200000</td>
<td>-0.800000</td>
</tr>
<tr>
<td>6</td>
<td>1.7572690</td>
<td>3.2047940</td>
<td>5.3560130</td>
<td>0.8200000</td>
<td>-0.800000</td>
</tr>
<tr>
<td>7</td>
<td>2.0873300</td>
<td>3.5964750</td>
<td>5.8583790</td>
<td>0.9430000</td>
<td>-0.600000</td>
</tr>
<tr>
<td>8</td>
<td>2.3676460</td>
<td>3.9586560</td>
<td>6.3150310</td>
<td>1.0000000</td>
<td>-0.6900000</td>
</tr>
<tr>
<td>9</td>
<td>2.5225420</td>
<td>4.1785660</td>
<td>6.6601000</td>
<td>1.0000000</td>
<td>-0.9690000</td>
</tr>
<tr>
<td>10</td>
<td>2.6103190</td>
<td>4.3433700</td>
<td>6.9924330</td>
<td>1.0000000</td>
<td>-0.2660000</td>
</tr>
<tr>
<td>11</td>
<td>2.7957680</td>
<td>4.5703150</td>
<td>7.2566520</td>
<td>1.0000000</td>
<td>-0.7100000</td>
</tr>
<tr>
<td>12</td>
<td>3.0444790</td>
<td>4.8951560</td>
<td>7.6731390</td>
<td>1.0000000</td>
<td>-0.6100000</td>
</tr>
<tr>
<td>13</td>
<td>3.2901800</td>
<td>5.2579190</td>
<td>8.1325580</td>
<td>1.0000000</td>
<td>-0.5100000</td>
</tr>
<tr>
<td>14</td>
<td>3.2549290</td>
<td>5.2951730</td>
<td>8.2472929</td>
<td>0.8207157</td>
<td>-0.6100000</td>
</tr>
<tr>
<td>15</td>
<td>3.5791150</td>
<td>5.5791030</td>
<td>8.5467040</td>
<td>1.0000000</td>
<td>-0.4100000</td>
</tr>
<tr>
<td>16</td>
<td>3.0220240</td>
<td>5.0812700</td>
<td>9.0352500</td>
<td>1.0000000</td>
<td>-0.3100000</td>
</tr>
<tr>
<td>17</td>
<td>4.0920490</td>
<td>6.2231890</td>
<td>9.3757410</td>
<td>1.0000000</td>
<td>-0.2100000</td>
</tr>
<tr>
<td>18</td>
<td>4.4571130</td>
<td>6.7589870</td>
<td>9.9973390</td>
<td>1.0000000</td>
<td>-0.1100000</td>
</tr>
<tr>
<td>19</td>
<td>4.7656660</td>
<td>7.6793690</td>
<td>10.4606229</td>
<td>1.0000000</td>
<td>-0.0459885</td>
</tr>
<tr>
<td>20</td>
<td>5.3095130</td>
<td>7.7859700</td>
<td>11.308955</td>
<td>1.0000000</td>
<td>0.0549115</td>
</tr>
<tr>
<td>21</td>
<td>5.3923700</td>
<td>7.8592260</td>
<td>11.445637</td>
<td>0.9961363</td>
<td>0.0359115</td>
</tr>
<tr>
<td>22</td>
<td>5.2388700</td>
<td>8.0257350</td>
<td>11.652838</td>
<td>1.0000000</td>
<td>0.1259115</td>
</tr>
<tr>
<td>23</td>
<td>5.3223940</td>
<td>8.0413080</td>
<td>11.663008</td>
<td>1.0000000</td>
<td>0.1317210</td>
</tr>
</tbody>
</table>

Objective 1: Force mini

Objective 2: Force nominal

Objective 3: Force maxi
Optimization: optimized section

Comparison Initial CAD section / optimized section

Geometric differences:

Height: +1mm

Thickness_ext: +0.86mm

Thickness_int: +0.15mm

Radius_ext: +0.96mm

Radius_int: +0.97mm
Stochastic study

- Check for robusteness of the optimized design
- Choice of type of study
- Distribution of input variables
Stochastic study: results

- Probability bar chart
- Statistic indicator

Robustness indicator:
- Solution is robust

<table>
<thead>
<tr>
<th>Nominal force</th>
<th>Red: distribution of force values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green: probability of a force being equal to a specific value</td>
<td></td>
</tr>
<tr>
<td>Blue: probability of a force being lesser than a specific value</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>mini</th>
<th>nom</th>
<th>maxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>5.4662116</td>
<td>7.9635887</td>
<td>11.545768</td>
</tr>
<tr>
<td>Avg. Dev.</td>
<td>0.3468417</td>
<td>0.3344647</td>
<td>0.4010990</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.4348599</td>
<td>0.4210807</td>
<td>0.5110038</td>
</tr>
<tr>
<td>Variance</td>
<td>0.1891031</td>
<td>0.1773089</td>
<td>0.2611249</td>
</tr>
<tr>
<td>CoV</td>
<td>0.0795542</td>
<td>0.0528757</td>
<td>0.0442590</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.0800649</td>
<td>-0.0689962</td>
<td>-0.0185944</td>
</tr>
<tr>
<td>Median</td>
<td>5.4683095</td>
<td>7.9502505</td>
<td>11.572595</td>
</tr>
<tr>
<td>RMS</td>
<td>5.4833093</td>
<td>7.9746022</td>
<td>11.556957</td>
</tr>
<tr>
<td>Min</td>
<td>4.3875740</td>
<td>6.9787310</td>
<td>10.346871</td>
</tr>
<tr>
<td>Max</td>
<td>6.4297900</td>
<td>8.8894300</td>
<td>12.789698</td>
</tr>
<tr>
<td>Range</td>
<td>2.0422160</td>
<td>1.9106990</td>
<td>2.4432870</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Bound Type</th>
<th>Bound Value</th>
<th>Reliability</th>
<th>Probability of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>mini</td>
<td><=</td>
<td>6.2162870</td>
<td>0.9500000</td>
<td>0.0500000</td>
</tr>
<tr>
<td>nom</td>
<td><=</td>
<td>8.6624290</td>
<td>0.9500000</td>
<td>0.0500000</td>
</tr>
<tr>
<td>maxi</td>
<td><=</td>
<td>12.359195</td>
<td>0.9500000</td>
<td>0.0500000</td>
</tr>
</tbody>
</table>
Conclusions

- New design approach
- Effect of extrusion tolerance on the design response investigated
- Optimal response predicted using numerical model
- Design of optimal solution is robust
- The approach used is valid for shape definition that meets specified design requirements.
- Can be extended to define manufacturing tolerances of the design
Merci
Thank you