Fan System Design and Performances Prediction Through Optimization Process

Manuel Henner – Valeo Engine Cooling
Arnaud Stauffer, Frank Delcroix, Christophe Bailly – Altair
Vedat Adat – Metacomptech
1 – Industrial background
Industrial background

- Fan system product lines and thermal components
 - Components intended for mass production
 - High pressure for reducing the cost of these products
Technical constraints for fan system

- More and more constraint of packaging in the underhood
 - The downstream flow of the fan is affected by the aerodynamic blockage created by mechanical components (motor, gear-box, …)
 - The fan is no longer working as a standard axial turbomachinery

- Need to improve development methods
 - Standard theory for axial machine not fully valid for such flow
 - For energy efficiency, the fan must provide optimum performances
2 – Objectives
New type of specifications for fan system

- Fluid simulation intended to improve fan systems
 - Simulation can take into account complex environments
 - Realistic configuration compared to real usage of the fan in the under hood

Black-plate configuration: 120 mm Hx to plate

Specifications

Domaine of simulation

INLET (flow rate)

N=2400 Rpm

Back-plate

OUTLET (pressure)

Only one blade passage meshed (1/7)
Build a methodology to conduct complex development

- Combine optimization method with aerodynamic fan simulation
 - Build the methodology on the base of the know-how of experts
 - Link the CFD tool CFD++ (Metacomptech) with Hyperworks platform (Altair)
 - Provide solutions for best performances with a high level of confidence

- Experiment and test the method to be implemented with high power computing
 - Demonstrate the benefit of big computing capacities (Expamtion Project)
 - Save time and resources to go further in our research (acoustic for instance with CAA++...)

![Cartoon of a person working at a computer]
3 – Methods
The different steps

- **Sensitivity analysis**
 - Several parameters are chosen on the base of the know-how of experts
 - A first DOE is conducted with coarse meshes
 - Results analysis help ranking parameters and determine cross-correlation between them

- **Optimization conducted with a reduce set of parameters**
 - Most influential parameters are selected to drive the optimization with fine meshes
 - The objective is to minimise the torque
 - Two constraints are established:
 - Pressure rise > 210 Pa at nominal point (QN)
 - Pressure rise > 0 at high flow rate (QH)

- **Optimization conducted with a full set of parameters (to be continued)**
 - Demonstrate the ability of using highly parallelised computing to reduce development time
 - Evaluate the cost and benefit of running the full set of parameter compared to the reduce one
Parameters

- **Chosen Parameters to describe a complex blade surface**
 - 4 selected radius to obtain the effect of the twist: bottom, mid span, 80% of the span, top
 - For each radius, chord can be move from 80% to 120%
 - For each radius, camber can be modified from 100% to 20%
 - For each radius, stagger can be changed by +/- 4°

 - A total of 12 independent parameters
 - 2 different flow rates (the nominal one and a high flow rate)
 - Initial geometry based on a existing one

 - Blade thickness distribution kept constant
 - Sweep variation not studied

Variations can be considered as small

→ **Local optimization in the field of solutions**
Process

HyperStudy
Optimization Algorithm

Templex
Update Shape values

HyperMesh (batch mode)
Generate the morphed mesh

HyperMesh (batch mode)
Export the CFD++ model

CFD++
Run the 2 simulations

CFD++ / HyperStudy
Extract the 3 responses
Mesh morphing

- **Process to deform the mesh (full hexa meshing)**
 - The blade surface mesh is deformed by the help of handles
 - The mesh around the blade aimed to catch the boundary flow is morphed according to the new shape (O-grid topology)
 - The external domain is reconstructed to kept constant dimensions although the package of the fan has changed
 - Automated re-meshing between the O-grid and the external limits of the domain
Mesh morphing

- Handles control the morphing
 - Handles placed according to the description of a aerodynamic profile: leading edge, trailing edge, mid chord
 - Handles are located at for different radius (bottom, mid-span, ¾ span and top)

General view of the blade with 4 chosen radius

Locations of handles:
Red = master (can be move independently)
Yellow = slave
Mesh morphing

- Chord variation
Mesh morphing

- Stagger angle variation
Mesh morphing

- Camber variation
Mesh morphing

- Maximum envelope
Mesh morphing

- Some variations

Objective: give a maximum of freedom to the shape
Fan simulation (CFD++)

Mesh size: 616 500 nodes / 585 000 cells
(Inlet: 92 500 cells / Fan: 398 000 cells / Outlet: 94 000 cells)
4 – DOE and sensitivities
First set of simulations

- NOLH designs (*Nearly Orthogonal Latin Hypercube*)
- 65 designs
- Each parameter has only one time the same value
- Theoretically, the distances between each design are maximized

<table>
<thead>
<tr>
<th>Rayon</th>
<th>85,3</th>
<th>131,88</th>
<th>186,21</th>
<th>209,5</th>
<th>85,3</th>
<th>131,88</th>
<th>186,21</th>
<th>209,5</th>
<th>85,3</th>
<th>131,88</th>
<th>186,21</th>
<th>209,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>copie</td>
<td>0,9</td>
<td>0,9</td>
<td>0,9</td>
<td>0,9</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>corde 1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>corde 2</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>corde 7</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>corde 14</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>corde 17</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>corde 7</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>corde 14</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>corde 17</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>calage 1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>calage 7</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>calage 14</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>calage 17</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>calage 1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>calage 7</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>calage 14</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>calage 17</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>camber 1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>camber 7</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>camber 14</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>camber 17</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
</tbody>
</table>
Second set of simulations

- Extreme values + Hammersley run
- 116 designs
- Fitted for design of experiment

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Complement extrême →</td>
<td>66</td>
<td>0,9000</td>
<td>0,9000</td>
<td>0,9000</td>
<td>0,9000</td>
<td>4,0000</td>
<td>-4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>67</td>
<td>1,1000</td>
<td>0,9000</td>
<td>0,9000</td>
<td>0,9000</td>
<td>-4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>0,8000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>68</td>
<td>0,9000</td>
<td>1,1000</td>
<td>0,9000</td>
<td>0,9000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>69</td>
<td>1,1000</td>
<td>1,1000</td>
<td>0,9000</td>
<td>0,9000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>70</td>
<td>0,9000</td>
<td>0,9000</td>
<td>1,1000</td>
<td>0,9000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>71</td>
<td>1,1000</td>
<td>0,9000</td>
<td>1,1000</td>
<td>0,9000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>72</td>
<td>1,1000</td>
<td>0,9000</td>
<td>1,1000</td>
<td>0,9000</td>
<td>4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>73</td>
<td>1,1000</td>
<td>1,1000</td>
<td>1,1000</td>
<td>0,9000</td>
<td>-4,0000</td>
<td>-4,0000</td>
<td>-4,0000</td>
<td>-4,0000</td>
<td>0,0000</td>
<td></td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>74</td>
<td>0,9000</td>
<td>0,9000</td>
<td>0,9000</td>
<td>1,1000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>75</td>
<td>0,9000</td>
<td>1,1000</td>
<td>0,9000</td>
<td>0,9000</td>
<td>1,1000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>76</td>
<td>1,1000</td>
<td>1,1000</td>
<td>0,9000</td>
<td>0,9000</td>
<td>1,1000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>77</td>
<td>1,1000</td>
<td>1,1000</td>
<td>1,1000</td>
<td>0,9000</td>
<td>1,1000</td>
<td>-4,0000</td>
<td>-4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>78</td>
<td>0,9000</td>
<td>0,9000</td>
<td>1,1000</td>
<td>1,1000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>-4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>79</td>
<td>1,1000</td>
<td>0,9000</td>
<td>1,1000</td>
<td>1,1000</td>
<td>-4,0000</td>
<td>-4,0000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>80</td>
<td>0,9000</td>
<td>1,1000</td>
<td>1,1000</td>
<td>1,1000</td>
<td>1,1000</td>
<td>1,1000</td>
<td>-4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Complement extrême →</td>
<td>81</td>
<td>1,1000</td>
<td>1,1000</td>
<td>1,1000</td>
<td>1,1000</td>
<td>1,1000</td>
<td>1,1000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>4,0000</td>
<td>0,0000</td>
</tr>
</tbody>
</table>

- un tirage dit de Hammersley
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 - 11
 - 12
 - 13
 - 14
 - 15
 - 16

- 0,9011 1,0728 0,9508 1,0295 2,4134 0,5059 1,1689 1,1459 0,1643
- 0,9022 1,0148 0,9176 0,9013 -1,1999 0,6841 0,5373 -0,1887 0,1163
- 0,9033 0,9255 1,0619 1,0481 1,4244 3,9262 0,4149 -1,5214 0,2217
- 0,9044 1,0071 0,9328 0,9776 -1,4591 -1,2378 0,4956 -1,0296 0,6303
- 0,9055 1,0957 0,9670 0,9909 -2,8725 -2,9943 2,0093 -1,9189 0,1705
- 0,9066 0,9933 0,9808 1,0250 -3,8134 1,3546 3,9562 -2,8254 0,0362
- 0,9077 1,0338 0,9027 0,9417 -0,6654 -2,3189 -1,0741 3,2272 0,2176
Result Analysis

- **Correlation**
 - 65 designs (NOLH) + 116 designs (Hammersley)
 - Low correlations between parameters: all are useful (green area)
 - High correlation between objectives: non independent (blue area)
Result Analysis

- Global sensitivities
 - All parameters count, with different loads
 - Stagger is the main parameter
 - Chord 14 (80% span) is the most important location

- Reduce set of parameters (8)
 - Parameters at bottom can be rejected at first (chord, stagger, camber)
 - Camber at mid span is also rejected
4 – Optimization
Optimisation with Adaptative Surface Response Method (ARSM)

- Parameters at bottom and camber at mid span are disabled

<table>
<thead>
<tr>
<th>Design variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Minimize the torque (in absolute value)

Define objective

Goal: Maximize

<table>
<thead>
<tr>
<th>On</th>
<th>Label</th>
<th>Varname</th>
<th>Apply On</th>
<th>Evaluate from</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>obj_1</td>
<td>torque_rpm230</td>
<td>SOLVER</td>
<td></td>
</tr>
</tbody>
</table>

- 2 constraints on the pressure rise

Define constraints

<table>
<thead>
<tr>
<th>On</th>
<th>Label</th>
<th>Varname</th>
<th>Type</th>
<th>Apply Constraint On</th>
<th>Bound Type</th>
<th>Bound Value</th>
<th>CDF Limit</th>
<th>Evaluate From</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>c_1</td>
<td>Deterministic</td>
<td>delta_p_rpm2300</td>
<td>>=</td>
<td>210.000000</td>
<td>SOLVER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>c_2</td>
<td>Deterministic</td>
<td>delta_p_rpm3500</td>
<td>>=</td>
<td>0.00000000</td>
<td>SOLVER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimisation with Adaptative Surface Response Method (ARSM)

- Objectives and constraints are approximated with a second order polynomial
- The polynomial coefficient are determined using a square fit on previous design points
- Stop when converged below a certain level of error from one iteration to the other
Convergence of the process

- Great improvement on the objective (+6.5%)
- Constraint are still met
- not so much iterations

<table>
<thead>
<tr>
<th>Pressure rise</th>
<th>Torque</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Run</td>
<td>221.45 Pa</td>
<td>1.0416 N.m</td>
</tr>
<tr>
<td>Optimized shape</td>
<td>218.65 Pa</td>
<td>0.9184 N.m</td>
</tr>
</tbody>
</table>
Result: pressure distribution on the optimized blade

- The fan blade is not highly loaded at the top, probably a consequence of the objective of reducing the torque (pressure momentum increases with radius)
- Low load at tip may improve the acoustic
Result: radial distribution on the optimized blade

- The optimization went naturally to a radially equilibrated fan (concentrically flow pattern on the blade), which is in theory the optimum.
- Less good at bottom, where parameters were disabled for the reduced set.
5 – Aeroacoustic
Aeroacoustic: module simulation (CFD++ / CAA++)

Aeroacoustic capabilities provided by the simulation:

- A complete mesh of the module (rotor-stator interaction) is built to predict pressure fluctuation on surfaces.

- Regular mesh required for propagation.
Aeroacoustic: sound propagation and directivities

- Tonal noise is predicted from pressure post-processing
- Domain of propagation allows studies on directivities
- Provide data to understand noise mechanism and related geometrical effects
6 – Conclusions
Conclusions: results

- **Fan systems optimisation**
 - Main parameters were chosen by expert in charge of fan system development
 - Analysis of sensitivity was conducted to check the relevancy of these parameters
 - A reduce set of parameters was used to perform a optimisation

- **Optimization results**
 - A complete loop of optimization has been established on Hyperworks platform linked to CFD++ to evaluate the fan performance
 - Despite the initial run started from a blade considered as good, a great improvement (+6.5%) on efficiency was obtained in few iterations

- **Gain on the methodology**
 - The development time can be reduced from one month with the “standard human process” to less than one week with a reduced set of parameters
 - High power computing can even improve the process to 2 days of simulation with the complete set of 12 parameters (estimated time, work on progress)
Conclusions: the role of an optimization process

- Standard design process is more complicated regarding new specifications
 - Some risks exist with classical methods: no solution found in the timeframe or below the optimum

- Optimization process should secure the situation
 - Establish the methodology helps capture the current know-how and the expertise
 - Several preferred solutions can be evaluated by accurate numerical simulations

- Need to concentrate our human resources on system analysis
 - Less human time on fan development
 - Going further in our research (acoustic, module, under hood...)

Product design must be automated by the help of optimization process
R&D efforts must be focused on innovation