Optimization of Fiber Reinforced Plastic Parts by Using Injection Molding Simulation

Tilmann Mauz, SimpaTec GmbH
Bonn, Germany, 11/08/2011
Content

• Short Introduction of SimpaTec GmbH

• Tensile bar

• Bike part

• Conclusion
SimpaTec GmbH

- Reseller of Moldex3D, founded 2004 in Aachen/Germany
 - since 2005 Germany, Netherlands, Belgium, Luxembourg, France and Austria
 - 2009: Opening of branch offices in Southern Germany and France
 - 2010: Foundation of local French company SimpaTec SarL and Thailand office
- Offering services in the field of optimization for injection moulding simulation
- Development of customer specific software enhancements
- Representing Beaumont Inc., USA -> Meltflipper
- Participation in numerous research projects and working groups
- Activities in India
- Actual head count: 11 +
Theory: Consideration tensile bar

- **Simulation:**
 - Process parameter according DIN

- **Assumptions:**
 - homogeneous material properties

- **Tensile direction:**
 - independent of manufacturing process

diagram showing dimensions:
- \(h \): Probedicke
- \(b \): Probenbreite
- \(B \): Kopfbreite (\(\approx 1,2b+3 \text{ mm} \))
- \(h \): Kopfhöhe (\(\approx 2b+10 \text{ mm} \))

\(a \): Anfangsmesrlänge
\(L_0 \): Versuchslänge (\(L_0 \geq L_0 + 1,5 \sqrt{S_0} \))
\(L_t \): Gesamtlänge

Bezeichnung einer Zugprobe Form E mit Probenbreite \(b = 16 \text{ mm} \) und Anfangsmesrlänge \(L_0 = 50 \text{ mm} \):

Zugprobe DIN 50125-E5x16x50
Goal: Evaluation of mesh influence for different mesh types

- Fiber orientation and Halpin-Tsai for short glass fibers
- Actual release of Moldex3D supports also long glass fiber model with patented iARD-RPR model.
Youngs modulus distribution in the part, the effects of fiber orientation are clearly to be seen.
Mesh type 1: Tetraeder fine

- ~100,000 elements
- ~4 layers of elements across part thickness
Mesh type 1: Tetraeder fine

- Fiber orientation shows non-uniform distribution according to simulation
Mesh type 1: Tetraeder fine

- Comparison Measurement vs. Simulation

Simulation was done with ANSYS, mapped model

Very good prediction
Mesh type 2: Tetraeder coarse

- ~ 3,000 elements
- ~ 1 layer across part thickness
Mesh type 2: Tetraeder coarse

- Fiber orientation shows totally other behavior
Mesh type 2: Tetraeder coarse

- Comparison Measurement vs. Simulation

Simulation was done with ANSYS, mapped model

Poor prediction
Mesh type 3: BLM Mesh

- ~ 6,000 elements
- 2 boundary layer
- inner elements done with tetraeder elements
Mesh type 3: BLM Mesh

- Fiber orientation shows similar behavior as fine tetraeder model
Mesh type 3: BLM Mesh

- Comparison
 Measurement vs. Simulation

Simulation was done with ANSYS, mapped model

pretty good prediction for element reduction with factor 1/18
Switch to reality: Real part

Brake handle of a bike equipped with wheel disc brake

Functions of housing:
• Pressure cylinder
• Fixing at handlebar,
• Bearing of control device
• Definition of brake fluid reservoir

Material: PA66 fiber filled with volume fraction > 30%
Part and load case description

- Force onto control device
- Pressure load to cylinder
- Fixation to the handle bar
Rheological simulation

- Injection simulation with totally ~1.2 Mio elements
- Evaluation of weld line positions, flow behavior and fiber orientation
- Important: Complete mold layout is included (mold inserts, cooling lines, …).
Rheological simulation

- BLM Model
- Only 1 boundary layer for direct output to structural fem-model (SIMULIA)
Rheological simulation

• process parameter for flow rate and pressure curves, valve gating if necessary

![Flow rate profile](image)

<table>
<thead>
<tr>
<th>Valve gate</th>
<th>Type</th>
<th>Control point</th>
<th>Mesh node ID</th>
<th>Value</th>
<th>Unit</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Timing</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Close</td>
</tr>
<tr>
<td></td>
<td>Timing</td>
<td>1-1</td>
<td>-</td>
<td>-</td>
<td>sec</td>
<td>Open</td>
</tr>
<tr>
<td></td>
<td>Timing</td>
<td>1-2</td>
<td>-</td>
<td>3.05</td>
<td>sec</td>
<td>Open</td>
</tr>
<tr>
<td>2</td>
<td>Timing</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Timing</td>
<td>2-1</td>
<td>-</td>
<td>-</td>
<td>sec</td>
<td>Open</td>
</tr>
<tr>
<td>3</td>
<td>Timing</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Timing</td>
<td>3-1</td>
<td>-</td>
<td>-</td>
<td>sec</td>
<td>Close</td>
</tr>
<tr>
<td></td>
<td>Timing</td>
<td>3-2</td>
<td>-</td>
<td>3.06</td>
<td>sec</td>
<td>Open</td>
</tr>
<tr>
<td>4</td>
<td>Timing</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Timing</td>
<td>4-1</td>
<td>-</td>
<td>-</td>
<td>sec</td>
<td>Open</td>
</tr>
<tr>
<td></td>
<td>Timing</td>
<td>4-2</td>
<td>-</td>
<td>3.06</td>
<td>sec</td>
<td>Open</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Node-1</th>
<th>Node-2</th>
<th>Node-3</th>
<th>Node-4</th>
<th>Node-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (%)</td>
<td>0</td>
<td>11.5242</td>
<td>24.6071</td>
<td>50.5578</td>
<td>100</td>
</tr>
<tr>
<td>Flow Rate (%)</td>
<td>48.0427</td>
<td>48.0427</td>
<td>69.395</td>
<td>90.0365</td>
<td>50</td>
</tr>
</tbody>
</table>
Rheological simulation

Flow front result with weld line prediction

Animation
Rheological simulation

Flow front result with weld line prediction

Moldex3D

Animation
Rheological simulation

Flow front results:

- Weld lines
- Different flow directions in the area of the pressure cylinder
- Acceleration at the end of the flow path
Rheological simulation

Fiber orientation shows non uniform behaviour and leads to suggestions of possible problematic areas.

Inhomogenous behaviour at the pressure cylinder.

Bonn, 11/08/2011
Rheological simulation - Quality

Volumetric shrinkage

Normal range of values, no overpacking -> ok
Rheological simulation - Quality

Distribution of density

Values are within close range, no signs for eventual surface defects
Rheological simulation - Quality

Total displacement with scale factor > 1
Results depends directly of fiber result and thermal effects:
Rheological simulation

Temperatur distribution in the mold – Identification of hot spots, responsible for displacement and flow front properties.
Rheological simulation – Interfacing

- Output as ABAQUS - Mesh
- Fiber orientation included in material properties
- Clustering of material cards possible
Mechanical simulation

Model:

- Housing from Moldex3D with ~6000 different property cards
- Actuator and handle bar modelled as aluminium parts
Mechanical simulation

- Displacements used as indicator for mechanical loads (Stress / Strain)
Mechanical simulation - Results

- v.-Mises Stress

- Higher stress values are shown in the cylinder area

- also different results due to weld lines and non uniform fiber orientation

Uniform / isotropic simulation

Simulation with respect to fiber orientation
Mechanical simulation - Results

Isotropic simulation

Simulation with fiber orientation, identification of critical areas
Mechanical simulation - Results

Strain values

Simulation with fiber orientation, identification of critical areas

Isotropic simulation
Conclusion

• The project proved clearly the necessity of linking the rheological simulation of plastic parts to the structural simulation in order to capture the effects of production.
• Even with a simple model taking the fiber effects into account the simulation results showed a picture more close to reality and helped to identify problematic areas in the design.
• By using normal (?) isotropic modelling the problematic areas are not shown – this will lead to eventual failure situation.
• Regarding fo failure criterias for simulation, there should be an enhancement of actual simulation capabilities.
Thanks for your attention!

SimpaTec GmbH
Schloss-Rahe-Strasse 15
52072 Aachen

SimpaTec GmbH
Hornbergstraße 39
70794 Filderstadt